

Reconciling land use CO₂ fluxes: Efforts done so far (2)

Gidden, M.J., **Gasser, T.**, Grassi, G. et al. Aligning climate scenarios to emissions inventories shifts global benchmarks. *Nature* 624, 102–108 (2023). <u>https://doi.org/10.1038/s41586-023-06724-y</u>

The study:

Article

Aligning climate scenarios to emissions inventories shifts global benchmarks

https://doi.org/10.1038/s41586-023-06724-y	Matthew J. Gidden ^{1,2,10} , Thomas Gasser ^{1,10} , Giacomo Grassi ³ , Nicklas Forsell ¹ , Iris Janssens ^{1,4} ,
Received: 13 February 2023	William F. Lamb ^{5,6} , Jan Minx ^{5,6} , Zebedee Nicholls ^{1,7,8} , Jan Steinhauser ^{1,9} & Keywan Riahi ¹
Accepted: 6 October 2023	
Published online: 22 November 2023	

Open access

¹International Institute for Applied Systems Analysis, Laxenburg, Austria. ²Climate Analytics, Berlin, Germany. ³Joint Research Centre, European Commission, Ispra, Italy. ⁴Department of Computer Science, imec, University of Antwerp, Antwerp, Belgium. ⁵Mercator Research Institute on Global Commons and Climate Change, Berlin, Germany. ⁶Priestley International Centre of Climate, School of Earth and Environment, University of Leeds, Leeds, UK. ⁷Melbourne Climate Future's Doctoral Academy, School of Geography, Earth and Atmospheric Sciences, University of Melbourne, Parkville, Victoria, Australia. ⁸Climate Resource, Northcote, Victoria, Australia. ⁹Potsdam Institute for Climate Impact Research, Potsdam, Germany. ¹⁰These authors contributed equally: Matthew J. Gidden, Thomas Gasser. ⁶e-mail: gidden@iiasa.ac.at

Motivation: IPCC benchmarks from WG3

IPCC WG3 scenario database provides high-level mitigation benchmarks for policy advice

Excerpts from SYR SPM:

Figure SPM.5: Global emissions pathways consistent with implemented policies and mitigation strategies.

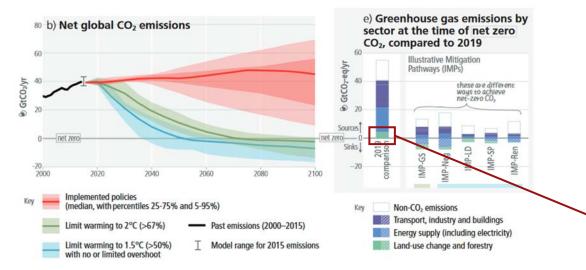
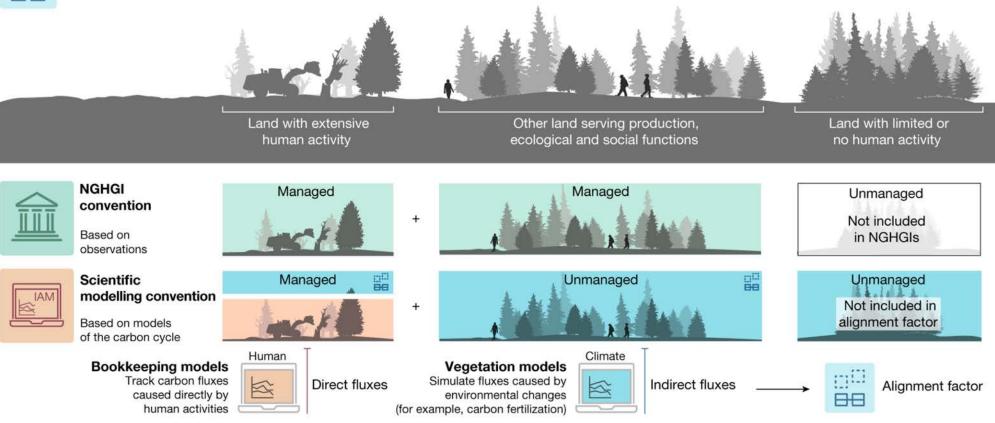


Table SPM.1: Greenhouse gas and CO₂ emission reductions from 2019, median and 5-95 percentiles.

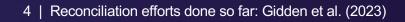
	Reductions from 2019 emission levels (%)					
		2030	2035	2040	2050	
Limit warming to1.5°C (>50%) with no or limited overshoot	GHG	43 [34-60]	60 [49-77]	69 [58-90]	84 [73-98]	
	CO ₂	48 [36-69]	65 [50-96]	80 [61-109]	99 [79-119]	
Limit warming to 2°C (>67%)	GHG	21 [1-42]	35 [22-55]	46 [34-63]	64 [53-77]	
	CO2	22 [1-44]	37 [21-59]	51 [36-70]	73 [55-90]	

Land emissions reported under model convention

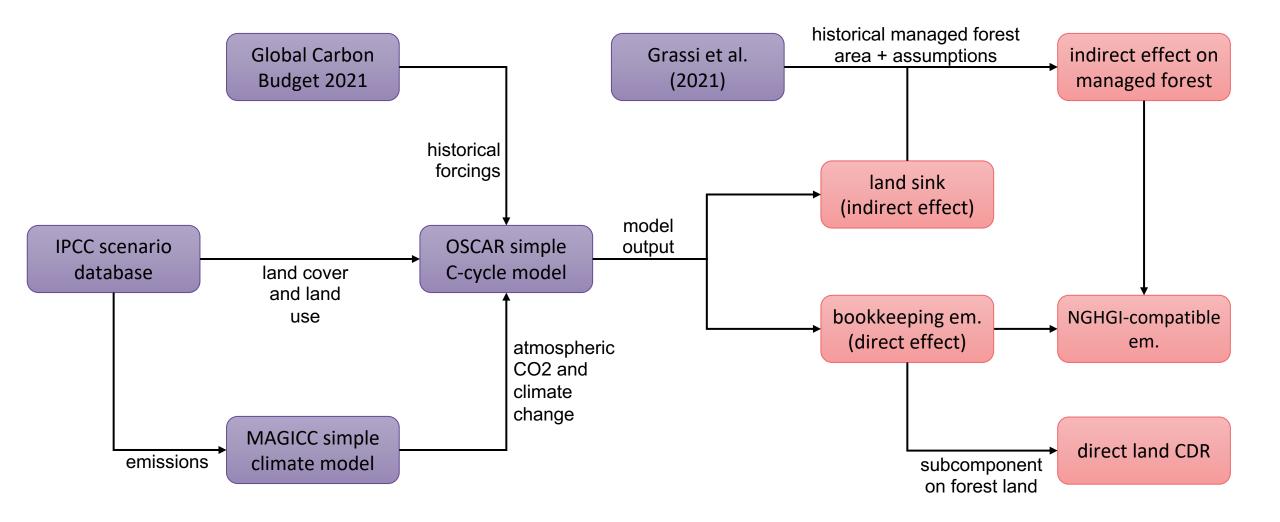

Goal: Reassess IPCC benchmarks under the NGHGI reporting convention

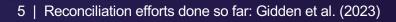
Misalignment between NGHGIs and scientific models

Differences stem from definitions of managed land and the carbon fluxes that are included

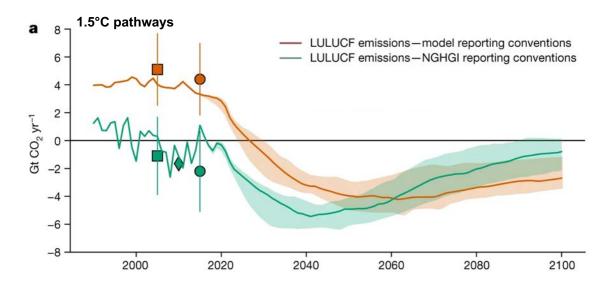


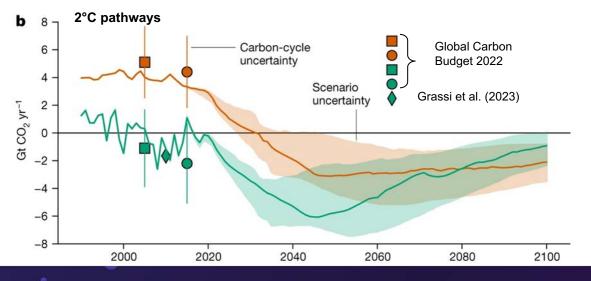
Enabling like-for-like comparison between the two conventions

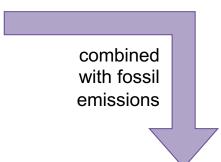

Scientific models (red) do not currently match NGHGIs (green) resulting in different emissions estimates. To align them, indirect fluxes (blue) that occur on all land considered managed in NGHGIs, simulated with vegetation models, need to be added to direct fluxes (red) calculated with bookkeeping models.


International Institute for Applied Systems Analysis

I I A S A www.ijasa.ac.at

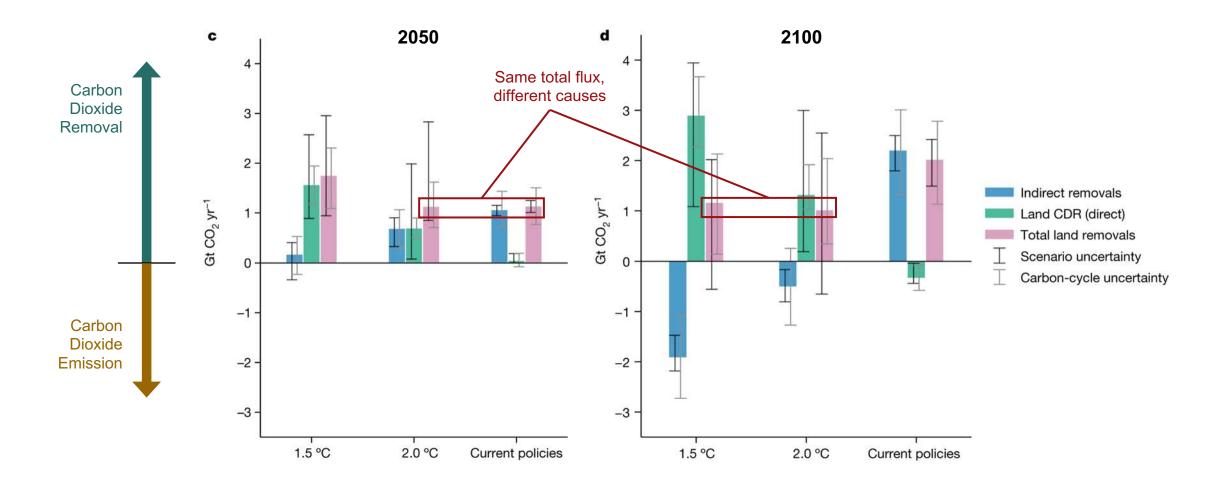

Approach: reanalysis with OSCAR





International Institute for Applied Systems Analysis

Results: shift of global benchmarks



Benchmark	Change in 1.5°C Pathways	Change in 2°C Pathways		
(Earlier) year of Net-Zero CO2	1 to 5 years	-1 to 7 years		
Emissions reductions by 2030	+3.4 to +5.9 %	+2.5 to +5 %		
Cumulative CO2 until Net-Zero	-54 to -95 GtCO2 (−15 to -18 %)	−93 to −167 GtCO2 (−15 to −18 %)		

6 | Reconciliation efforts done so far: Gidden et al. (2023)

Results: potential masking of efforts

Methods: the OSCAR model

A simple Earth system model, designed to emulate complex models, with a **specific focus on biogeochemical cycles**

One of the three bookkeeping models used for the Global Carbon Budget

Parameters (carbon densities) calibrated on complex vegetation models used for the Global Carbon Budget

Follows a **theoretical framework to separate direct and indirect effects** (Gasser and Ciais, 2013; <u>https://doi.org/10.5194/esd-4-171-2013</u>)

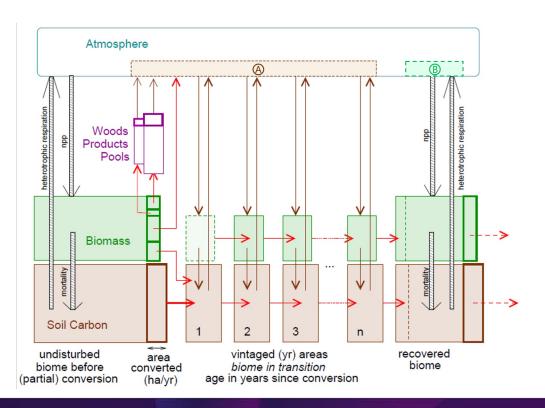
Keeps track of disturbed and undisturbed ecosystems separately:

Emissions from land use change (direct effect) defined as **the difference between disturbed and hypothetically recovered ecosystems** (A – B)

Natural land carbon sink (indirect effect) includes the hypothetically recovered ecosystems

Coupling between the direct and indirect effects:

Emissions affected by changing carbon densities (indirect direct) Land sink affected by land cover change (direct indirect)


Earth System Dynamics

Articles / Volume 4, issue 1 / ESD, 4, 171–186, 2013

https://doi.org/10.5194/esd-4-171-2013					
© Author(s) 2013. This work is distributed under the Creative Commons Attribution 3.0 License.	Article	Peer review	Metrics	Related articles	
Research article $oxtimes \Phi$				07 Jun 2013	

A theoretical framework for the net land-to-atmosphere CO_2 flux and its implications in the definition of "emissions from land-use change"

T. Gasser and P. Ciais

International Institute for Applied Systems Analysis

Methods: assumptions and limitations

Many assumptions because of limited data in the scenario database:

Some scenarios did not provide basic land cover information:

minimum required was Forest, Pasture, Cropland

~900 scenarios left out of ~1200

still representative of the database in terms of climate outcome

Worked at very coarse resolution with 5 IPCC regions

instead of national level for the Global Carbon Budget 10 regions was an option but would retain ~400 scenarios

Database provided land cover and not land cover change:

created a transition matrix using simple proportionality rules added a constant amount of reciprocal transitions to match historical gross transitions (as only net could be deduced) Used **other variables as proxies** for other model drivers: 'Forestry Production|Roundwood' for wood harvest 'Primary Energy|Biomass|Traditional' for shifting cultivation assumed constant if not provided

Additional modeling assumptions with room for improvement:

Global assumption regarding future managed forest area

Simple pattern scaling to get regional climate in OSCAR

High CO2-fertilization in OSCAR (because it is constrained to close the C budget over the historical period)

Recommendations

First, climate targets can be formulated explicitly for areas of critical mitigation action, including gross CO2 emission reductions without LULUCF, net land-based removals, engineered carbon removals and non-CO2 GHG emission reductions, allowing for parties to define their expected contributions and to measure progress in each domain separately.

Second, parties can clarify the nature of their deforestation pledges, because direct and indirect carbon fluxes vary greatly in different forest types.

Third, scientific and practitioner communities can convene discussions on how to enhance monitoring, reporting and verification of LULUCF fluxes to better align estimates from both groups.

Fourth, IAM teams can provide their individual assumptions and estimates for direct LULUCF emissions and removals, including the indirect flux component consistent with the NGHGIs and their assumptions about the land-use contribution of NDCs and long-term strategies.

Thank you.

Thomas Gasser

Senior Research Scholar Coordinator of the Earth system modeling theme Advancing Systems Analysis program (ASA) & Energy, Climate, and Environment program (ECE)

International Institute for Applied Systems Analysis (IIASA) Laxenburg, Austria

gasser@iiasa.ac.at